
WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

1

INTELLIGENT SYSTEM LAB MANUAL

LAB MANUAL

FOR

IS LAB

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

2

INTELLIGENT SYSTEM LAB MANUAL

STUDY OF PROLOG

Prolog – Programming in Logic
PROLOG stands for Programming In Logic – an idea that emerged in the early 1970s to

use logic as programming language. The early developers of this idea included Robert

Kowalski at Edinburgh (on the theoretical side), Marrten van Emden at Edinburgh

(experimental demonstration) and Alain Colmerauer at Marseilles (implementation).

David D.H.Warren’s efficient implementation at Edinburgh in the mid – 1970’s greatly

contributed to the popularity of PROLOG.

PROLOG is a programming language centered around a small set of basic mechanisms,

including pattern matching , tree-based data structuring and automatic backtracking. This

small set constitutes a surprisingly powerful and flexible programming framework.

PROLOG is especially well suited for problems that involve objects – in particular,

structured objects – and relations between them .

SYMBOLIC LANGUAGE
PROLOG is a programming language for symbolic , non – numeric computation. It is

especially well suited for solving problems that involve objects and relations between

objects .

For example , it is an easy exercise in prolog to express spatial relationship between

objects , such as the blue sphere is behind the green one . It is also easy to state a more

general rule : if object X is closer to the observer than object Y , and Y is closer than Z,

then X must be closer than Z. PROLOG can reason about the spatial relationships and

their consistency with respect to the general rule . Features like this make PROLOG a

powerful language for Artificial Language (A1) and non – numerical programming.

There are well-known examples of symbolic computation whose implementation in other

standard languages took tens of pages of indestible code . When the same algorithms

were implemented in PROLOG, the result was a cryetal-clear program easily fitting on

one page.

FACTS , RULES AND QUERIES
Programming in PROLOG is accomplished by creating a database of facts and rules

about objects, their properties , and their relationships to other objects . Queries then can

be posed about the objects and valid conclusions will be determined and returned by the

program. Responses to user queries are determined through a form of inferencing control

known as resolution.

For example:

1. Facts : Some facts about family relationships could be written as :

 sister(sue, bill)

 parent(ann, sam)

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

3

INTELLIGENT SYSTEM LAB MANUAL

 parent(joe,ann)

 male(joe)

 female(ann)

2. Rules : To represent the general rule for grandfather , we write :

 Grandfather(X,Z):-

 parent(X,Y),

 parent(Y,Z),

 male(X).

3. Queries : Given a data of facts and rules such as that above, we mat make queries

by tying after a query symbol ‘?_’ statements such as :

?_parent(X,sam)

X=ann

?_male(joe)

yes

?_grandfather(X,Y)

X=joe, Y=sam

?_female(joe)

no

PROLOG in Designing Expert Systems
An Expert System is a set of programs that manipulates encoded knowledge to solve

problems in a specialized domain that normally requires human expertise. An Expert

system’s knowledge is obtained from the expert sources such as texts, journals articles,.

databases etc. and coded in a form suitable for the system to use in its inference or

reasoning processes. Once a sufficient body of Expert knowledge has been acquired, it

must be encoded in some form, loaded into knowledge base, then tested, and refined

continually throughout the life of the system.

PROLOG serves as a powerful language in designing expert systems because of its

following features:

• Use knowledge rather than data.

• Modification of the knowledge base without recompilation of

control programs.

• Capable of explaing conclusions.

• Symbolic computations resembling manipulations of natural

language.

• Reason with meta-knowledge.

META-PROGRAMMING
A meta-program is a program that other programs as data. Interpreters and compilers are

examples of meta-programs. Meta-interpreter is a particular kind of meta-program: an

interpreter for a language written in that language. So a PROLOG meta-interpreter is an

interpreter for PROLOG, itself written in PROLOG.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

4

INTELLIGENT SYSTEM LAB MANUAL

Due to its symbol-manipulation capabilities, prolog is a powerful language for meta-

programming. Therefore, it is often used as an implementation language for other

languages. PROLOG is particularly suitable as a language for rapid prototyping where

we are interested in implementing new ideas quickly. New ideas are rapidly implemented

and experimented with. In prototyping the emphasis is on bringing new ideas to life

quickly and cheaply, so that they can be immediately tested.

On the other hand, there is not much emphasis on efficiency of implementation. Once the

ideas are developed, a prototype may have to be re-implemented, possibly in another,

more efficient programming language. Even if this is necessary, the prototype is useful

because it usually helps to speed up the creative development stage.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

5

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO SOLVE EIGHT QUEENS PROBLEM

STEP 1 : Represent the board positions as 8*8 vector , i.e., [1,2,3,4,5,6,7,8]. Store the set

 of queens in the list ‘Q’.

STEP 2 : Calculate the permutation of the above eight numbers stored in set P.

STEP 3 : Let the position where the first queen to be placed be (1,Y), for second be

 (2,Y1) and so on and store the positions in Q.

STEP 4 : Check for the safety of the queens through the predicate , ‘noattack ()’.

STEP 5 : Calculate Y1-Y and Y-Y1. If both are not equal to Xdist , which is the X –

 distance between the first queen and others, then go to Step 6 else go to Step 7.

STEP 6 : Increment Xdist by 1.

STEP 7 : Repeat above for the rest of the queens , until the end of the list is reached .

STEP 8 : Print Q as answer .

STEP 9 : Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

6

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR 8 QUEEN’S PROBLEM

 YES

 NO YES

 YES

 NO

START

H= integer

T= integer*

Take solution in Q

Take Permutation

of Q with

list[1,2,3,4,5,6,7,8]

Is Y1-

Y<>Xdist

Increment Xdist by 1

Print Q STOP

Let the position where 1
st
 queen to

be placed be (1,Y), for 2
nd

 be

(2,Y1) and so on and store in Q

Is Y-

Y1<>Xdist

Is

Q=0

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

7

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM FOR 8 QUEEN’S PROBLEM

domains

 H=integer

 T=integer*

predicates

 safe(T)

 solution(T)

 permutation(T,T)

 del(H,T,T)

 noattack(H,T,H)

clauses

 del(I,[I|L],L). /*to take a position from the permutation of list*/

 del(I,[F|L],[F|L1]):-

 del(I,L,L1).

 permutation([],[]). /*to find the possible positions*/

 permutation([H|T],PL):-

permutation(T,PT),\

del(H,PL,PT).

solution(Q):- /*final solution is stored in Q*/

 permutation([1,2,3,4,5,6,7,8],Q),

 safe(Q).

safe([]). /*Q is safe such that no queens attack each other*/

safe([Q|others]):-

 safe(others),

 noattack(Q,others,1).

noattack(_,[],_). /*to find if the queens are in same row, column or

diagonal*/

noattack(Y,[Y1|Ydist],Xdist):-

 Y1-Y<>Xdist,

 Y-Y1<>Xdist,

 dist1=Xdist,

 noattack(Y,Ydist,dist1).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

8

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-
goal:-solution(Q).

Q=[“3”,”8”,”4”,”7”,”1”,”6”,2”,”5”]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

9

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO IMPLEMENT DEPTH FIRST SEARCH

STEP 1 : Enter the node to be found.

STEP 2 : If the initial state is a goal state, quit and return success.

STEP 3 : Otherwise , do the following until success or failure is signaled.

(a) Generate a successor, E, of the initial state. If there are no more successors,

signal failure.

(b) Call Depth-first Search with E as the initial state.

(c) If success is returned , signal success . Otherwise continue in this loop.

STEP 4 : Print the output as the path traversed.

STEP 5 : Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

10

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR DEPTH FIRST SEARCH

 NO YES

 NO

 YES

 YES

 NO

START

Enter the node

to be found

Is node=

goal state
Print output as same

node

Generate a successor

E, of initial state

Is there

are more

successors

Print output as

failure

Call depth first

search with E as

initial node

Is node=

goal state
Print output as path

traversed

STOP

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

11

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM FOR DEPTH FIRST SEARCH

domains

 X=symbol

 Y=symbol*

predicates

 child(X,X)

 childnode(X,X,Y)

 path(X,X,Y)

clauses

 child(a,b). /*b is child of a*/

 child(a,c). /*c is child of a*/

 child(a,d). /*d is child of a*/

 child(b,e). /*b is child of b*/

 child(b,f). /*f is child of b*/

 child(c,g). /*g is child of c*/

 path(A,G,[A|Z]):- /*to find the path from root to leaf*/

 childnode(A,G,Z).

 childnode(A,G,[G]):- /*to determine whether a node is child of other*/

 child(A,G).

 childnode(A,G,[X|L]):-

 child(A,X),

 childnode(X,G,L).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

12

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-
goal:-path(a,e,L)

L=[“a”,”b”,”e”]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

13

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM FOR MENU DRIVEN PROGRAM FOR MEMBER,

CONCATENATION, PERMUTATION, ADD AND DELETE

FUNCTION

Step 1: Declare the functions for member, concatenation, permutation, add and delete.

Step 2: Enter the choices for above given call functions in X

Step 3: If (choice=1), call the member function.

Step 4: If (choice=2), call the concatenation function.

Step 5: If (choice=3), call the permutation function.

Step 6: If (choice=4), call the add function.

Step 7: If (choice=5), call the delete function.

Step 8: Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

14

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR MENU DRIVEN PROGRAM FOR MEMBER,

CONCATENATION, PERMUTATION, ADD AND DELETE

FUNCTION

START

X=integer

Y=integer*

1. Member

2. Concatenation

3. Permutation

4. Add

5. Delete

Enter your choice

Store choice in X

X

1 2 3 4 5

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

15

INTELLIGENT SYSTEM LAB MANUAL

 NO

YES

1

Enter the set

in L1

Enter the no.

to be checked

in A

Is

A is member

of L1

A is member

of L1

2

Enter 1
st
 set

in Y1and 2
nd

in Y2

Concatenate the

two sets in Y3

Y3 is the

new set

2

Enter the set

in Y1

Take permutation

of set Y1 in Y2

Permutation

set is Y2

4

Enter the set

in Y1

Enter the no.

to be add in

X

add X in Y1 and

store in Y2

Y2 is the reqd. set

5

Enter the set

in Y1

Enter the no.

to be deleted

in X

delete X in Y1 and

store in Y2

STOP

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

16

INTELLIGENT SYSTEM LAB MANUAL

MENUDRIVEN PROGRAM FOR MEMBER, CONCATENATION,

ADD, DELETE AND PERMUTATION FUNCTIONS

domains

 X=integer

 Y=integer*

predicates

member(X,Y)

 concatenation(Y,Y,Y)

 add(X,Y,Y)

 delete(X,Y,Y)

 permutation(Y,Y)

 choice(X)

goal

 makewindow(1, 18, 680, “Menu Driven”, 1, 1, 20, 70),

 write(“1. Member\n 2. Concatenation\n 3. Permutation\n 4. Add\n 5. Delete\n “),

 write(“Enter the choice :: “),

 readint(X),

 choice(X).

clauses

 choice(1):- /*Member function*/

 write(“\nEnter the set :: “),

 readterm(Y,L1),

 write(“\nEnter the number to be checked :: “),

 readint(A),

 member(A,L1),

 write(A),

 write(“is a member of “),

 write(L1),

 write(“\n\nEnter your choice again :: “),

 readint(X),

 choice(X).

 choice(2):- /*Concatenate function*/

 write(“Enter the 1
st
 set :: “),

readterm(Y,Y1),

 write(“\nEnter the 2
nd

 set :: “),

 readterm(Y,Y2),

 concatenation(Y1,Y2,Y3),

 write(Y3),

 write(“is the concatenated list”),

 write(“\n\nEnter your choice again :: “),

 readint(X),

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

17

INTELLIGENT SYSTEM LAB MANUAL

 choice(X).

 choice(3):- /*Permutation function*/

 write(“\nEnter the set :: “),

 readterm(Y,Y1),

 permutation(Y1,Y2),

 write(Y2),

 write(“is the permutation list of “),

 write(Y1),

 write(“\n\nEnter your choice again :: “),

 readint(X),

 choice(X).

choice(4):- /*Add function*/

 write(“\nEnter the set :: “),

 readterm(Y,Y1),

 write(“\nEnter the no. to be added :: “),

 readint(X),

 add(X,Y1,Y2),

 write(Y2),

 write(“is the new set “),

 write(“\n\nEnter your choice again :: “),

 readint(X),

 choice(X).

choice(5):- /*Delete function*/

 write(“\nEnter the set :: “),

 readterm(Y,Y1),

 write(“\nEnter the no. to be deleted :: “),

 readint(X),

 delete(X,Y1,Y2),

 write(Y2),

 write(“is the new set “),

 write(“\n\nEnter your choice again :: “),

 readint(X),

 choice(X).

member(X,[X|L]). /*to find the member*/

member(X,[F|L]):-

 member(X,L).

concatenation([],L,L). /*to concatenate two lists*/

concatenation([H|T],L1,[H|L2]):-

 concatenation(T,L1,L2).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

18

INTELLIGENT SYSTEM LAB MANUAL

permutation([],[]). /*to find permutation list of a list*/

permutation([H|T],PL):-

 permutation(T,PT),

 delete(H,PL,PT).

add(X,L,[X|L]). /*to add an element in a list*/

delete(X,[X|L],T). /*to delete an element from a list*/

delete(X,[H|T],[H|T1]):-

 delete(X,T,T1).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

19

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal:

1. Member

2. Concatenate

3. Permutation

4. Add

5. Delete

Enter the choice :: 2

Enter the 1
st
 set :: [1,3,5]

Enter the 2
nd

 set :: [2,4,6]

[1,3,5,2,4,6] is the concatenated list.

Enter ur choice again ::

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

20

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO FIND THE UNION OF TWO GIVEN LISTS

STEP 1 : Obtain the given lists as L and L1.

STEP 2 : Let H be the Head and T be the Tail of the List L.

STEP 3 : Check whether H is also a member of the other list L1.If yes, goto Step4 else

 goto Step5.

STEP 4 : check H is the last element of the list L. If yes, goto Step 6 else goto Step 5.

STEP 5 : Compare the rest of the elements of the tail T with that of the other list L1.

 Goto Step3.

 Do not duplicate the elements.

STEP 6 :Copy the list L1 as it is in list Z.

STEP 7 : Print Z as the required list .

STEP 8 : Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

21

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR UNION OF TWO LIST

 NO

 YES

 NO

 YES

START

X= integer*

Y= integer*

Take two lists in L

and L1

Let H be head and

T be tail of L

Is

H=L

Compare T with

L1

Store H in X

Is

H=0

Copy the list L1 as

it is in list X and

print Z

STOP

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

22

INTELLIGENT SYSTEM LAB MANUAL

 PROGRAM FOR UNION OF TWO LISTS

domains

 X=integer*

 Y=integer*

predicates

 member(X,L)

 union(L,L,L)

clauses

 member(X,[X|_]). /*to find the member of the list*/

 member(X,[_|T]):-

 member(X,T).

 union([],L,L). /*to union the two lists*/

 union([H|T],L,L1):-

 member(H,L),!,

 union(T,L,L1).

 union([H|T],L,[H|L1):-

 union(T,L,L1).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

23

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-
goal:-

union([1,2,3,4,5],[1,4,5,3,6,7],X)

X=[1,2,3,4,5,6,7]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

24

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO FIND THE INTERSECTION OF TWO GIVEN

LISTS

STEP 1 : Obtain the given lists as L and L1.

STEP 2 : Let H be the Head and T be the Tail of the list L.

STEP 3 : Check whether H is also a member of the other list L1. If yes , go to Step 4 else

 go to Step5.

STEP 4 : Copy the element H as an element of list Z .

STEP 5 : Check H is the last element of the list L. If yes, go to Step7 else go to Step 6.

STEP 6 : Compare the rest of the elements of the Tail T with that of the other list L1 .

Goto Step 3 .

STEP 7 : Print Z as the required list .

STEP 8 : Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

25

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR INTERSECTION OF TWO LIST

 NO

 YES

 NO

 YES

START

X= integer*

Y= integer*

Take two lists in L

and L1

Let H be head and

T be tail of L

Is

H=L Compare T with L

Store H in X

Is

H=0

Store L1and print

STOP

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

26

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO PERFORM INTERSECTION OF TWO LISTS

domains

 X=integer*

 Y=integer*

predicates

 member(X,L)

 intersection(L,L,L)

clauses

 member(X,[X|_]). /*to find the member of the list*/

 member(X,[_|T):-

 member(X,T).

 intersection([],L,[]). /*to find the intersection of two lists*/

 intersection([H|T],L,[H|L1]):-

 member(H,L),!,

 intersection(T,L,L1).

 intersection([H|T],L,L1):-

 intersection(T,L,L1).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

27

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-
goal:-

intersection([3,5,7,4,2],[1,3,2,4,5,6],X)

X=[3,5]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

28

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO FIND THE FACTORIAL OF A NUMBER

Step 1: Enter the integer as X.

Step 2: Initialize A=1.

Step 3: If X=0, then print Factorial is A.

Step 4: If X! =0 i.e. =B, then perform factorial of B and print the result.

Step 5: Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

29

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART TO FIND THE FACTORIAL OF A NUMBER

 YES

 NO

START

X= integer

Enter the no. in

X

A=1

Is

X=0

Factorial of X

is 1

fact(B,A)

C=A*B

D=B-1

fact(D,C)

STOP

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

30

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO FIND FACTORIAL OF A NUMBER

domains

 X=integer

predicates

 go

 factX,X)

clauses

 go:-

 write(“\nEnter the no. :: “),

 readint(X),

 A=1.

 fact(0,A). /*factorial of 0 is 1*/

 fact(X,A):-

 write(“Factorial of “),

 write(X),

 write(“ is “ A),

fact(B,A):- /*find the factorial by multiplying no. by its

predeccessors*/

 C=A*B,

 D=B-1,

 fact(D,C).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

31

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal:-

go

Enter the no. :: 4

Factorial of 4 is 16

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

32

INTELLIGENT SYSTEM LAB MANUAL

ALGORITHM TO IMPLEMENT BREADTH FIRST SEARCH

STEP 1 : Enter the node to be found.

STEP 2 : Create a variable called NODE-LIST and set it to the initial state.

STEP 3 : Until a goal state is found or NODE-LIST is empty do :

(a) Remove the first element from NODE-LIST and call it E . If NODE-LISt was

empty , quit.

(b) For each way that each rule can match the state described in E do :

i. Apply the rule to generate a new state .

ii. If the new state is a goal state, quit and return this state.

iii. Otherwise, add the new state to the end of NODE-LIST.

STEP 4 : Print the output as the path traversed.

STEP 5 : Exit.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

33

INTELLIGENT SYSTEM LAB MANUAL

FLOWCHART FOR BREADTH FIRST SEARCH

 NO YES

 NO

 NO

YES

START

Enter the node to

be searched

Create a variable NODE_LIST

and set it to initial state

Is node=

goal state

Check rules that match E

Apply rule to generate a new

state

Is new

state=

goal state

Print output as the

path traversed

STOP

Is node=

goal state

Add new state to the end of

NODE_LIST

A

A

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

34

INTELLIGENT SYSTEM LAB MANUAL

 PROGRAM TO IMPLEMENT BREADTH FIRST SEARCH

domains

 X, H, N, ND=symbol

 P, L, T, Z, Z1, L1, L2, L3, PS, NP, ST, SOL=symbol*

predicates

 solve(L, L)

 member(X,L)

 extend(L, L)

 conc(X, L, L)

 breadthfirst(L, L)

 goal(X)

clauses

 solve(start, solution):- /*solution is a state from start to a goal*/

 breadthfirst([[start]],solution).

breadthfirst([[node|path]| _] ,[node|path]):- /*solution is an extension to a goal*/

/*of one of path*/

 goal(node).

 breadthfirst([path|paths], solution):-

 extend(path,newpaths),

 conc(paths,newpaths,path1),

 breadthfirst(path1,solution).

 extend([node|path],newpaths):-

bagof([newnode, node|path],(s(node,

newnode),notmember(newnode,[node|path])), newpaths),!.

 extend(path, []).

 conc([], L, L).

 conc([X|L1], L2, [X|L3]):-

 conc(L1, L2, L3).

 member(X, [X|T]).

 member(X, [H|T]):-

 member(X, T).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

35

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal: solve([a, e], S)

 L= [“a”, “b”, ”c”, “d”, ”e”]

goal: solve([a, h],S)

 L= [“a”, “b”, ”c”, “d”, ”e”, ”f”, “g”, “h”]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

36

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO SOLVE MONKEY BANANA PROBLEM

domains

 State1,State2,MH,MV,Bp,HB,P1,P2=symbol

 Move=symbol*

predicates

 move(State1,Move,State2).

 state(MH,MV,BP,HB).

 push(P1,P2).

 walk(P1,P2).

 graps.

 climb.

clauses

 move(state(middle,onbox,middle,hasnot), /*Before move*/

 grasp, /*Grasp banana*/

 state (middle,onbox,middle,has)). /*After move*/

 move(state(P,onfloor,P,H),

 climb, /*Climb box*/

 state(P,onbox,P,H)).

 move(state(P1,onfloor,P1,H),

 push(P1,P2), /*Push box from P1 to P2*/

 state(P2,onfloor,P2,H)).

 move(state(P1,onfloor,B,H),

 walk(P1,P2), /*Walk from P1 to P2*/

 state(P2,onfloor,B,H)).

%canget(State):monkey can get Banana in State.

 canget(state(_,_,_,has)). /*can 1:Monkey already has it.*/

 canget(state1):- /*can 2:Do some work to get it*/

 move(State1,Move,State2), /*Do something*/

 canget(State2). /*Get it now. */

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

37

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal: canget(atdoor,atfloor,window,hasnot)

No solution.

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

38

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO FIND PERMUTATION OF A SET

domains

 X=integer

 Y=integer*

predicates

 permute(Y,Y)

 delete(X,Y,Y)

clauses

 delete(X,[X|T],T).

 delete(X,[H|T],[H|T1]):-

 delete(X,T,T1).

 permute([],[]).

 permute([H|T],PL):-

 permute(T,PT),

 delete(H,PL,PT).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

39

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal:permute([1,2],A)

A=[1,2]

A=[2,1]

2 Solutions

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

40

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO CONCATENATE TWO SETS

domains

 X=integer

 Y=integer*

predicates

 concatenate(Y,Y,Y)

clauses

 concatenate([],[]).

concatenate([H|T],L,[H|T1]):-

 concatenate(T,L1,L2).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

41

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal:concatenate([1,2,3],[4,5],A)

A=[1,2,3,4,5]

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

42

INTELLIGENT SYSTEM LAB MANUAL

PROGRAM TO FIND MEMBER OF A SET

domains

 X=integer

 Y=integer*

predicates

 member(X,Y)

clauses

 member(X,[X|T]).

 member(X,[F|L]):-

 member(X,L).

WCTM /IT/LAB MANUAL/6TH SEM/IF LAB

43

INTELLIGENT SYSTEM LAB MANUAL

OUTPUT:-

goal:member(2,[2,3,4])

Yes

